Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining

Abdul-Rani, A.M. and Nanimina, A.M. and Ginta, T.L. and Razak, M.A. (2017) Machined Surface Quality in Nano Aluminum Mixed Electrical Discharge Machining. Procedia Manufacturing, 7. pp. 510-517. ISSN 23519789

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

The development of implants in biomedical engineering application nowadays requires materials with good mechanical and physical properties. Conventional machining of high strength alloy materials is a challenge. Non-conventional machining processes such as electrical discharge machining (EDM) of high strength material have its limitations. Among the limitations are surface modification, induced corrosion, residual stress and reducing of fatigue performance during the EDM process. Nano aluminum mixed electrical discharge machining (PMEDM) is envisaged able to address some of the above mentioned problems. In this study, PMEDM machining performance on biomedical grade titanium alloy workpiece using nano aluminum powder is assessed to establish its improvement for biomedical application. The characteristics analyzed are surface roughness (Ra) and surface morphology. Process variable machining parameters used are peak current, ON-time (pulse duration), gap voltage and nano aluminum concentration. Results of nano aluminum PMEDM on titanium alloy material show slight improvement in terms of surface roughness (Ra) and surface morphology as compared to conventional EDM. PMEDM results show fewer defects in terms of cracks, craters and voids. © 2016

Item Type: Article
Additional Information: cited By 31
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 09 Nov 2023 16:21
Last Modified: 09 Nov 2023 16:21
URI: https://khub.utp.edu.my/scholars/id/eprint/9383

Actions (login required)

View Item
View Item