Effect of EM propagation medium on electrorheological characteristics of dielectric nanofluids

Adil, M. and Mohd Zaid, H. and Chuan, L.K. and Ahmad Latiff, N.R. (2017) Effect of EM propagation medium on electrorheological characteristics of dielectric nanofluids. Journal of Dispersion Science and Technology, 38 (4). pp. 570-576. ISSN 01932691

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

The effect of dielectric loss on the electrorheological (ER) characteristic of dielectric nanofluids under shear was studied. When nanofluids are activated by an applied electric field, it behaves like a non-Newtonian fluid under ER effect by creating the chains of nanoparticles. ER characteristics of ZnO and Al2O3 nanofluids with various nanoparticles concentration (0.1, 0.05, 0.01 wt) were measured. For this purpose, a solenoid-based electromagnetic (EM) transmitter was used under different propagation media including air, tap water, and salt water. The result shows that all the nanofluids exhibit pseudo-plastic behavior, while the electric field causes a significant increase in viscosity in the presence of tap water, followed by salt water. Additionally, the viscosity of nanofluid shows a high dependence on particle loading. A possible mechanism was also proposed to describe the effect of dielectric properties on the ER behavior of dielectric nanofluids. © 2017, Copyright © Taylor & Francis Group, LLC.

Item Type: Article
Additional Information: cited By 11
Uncontrolled Keywords: Dielectric devices; Dielectric losses; Dielectric properties; Electric fields; Nanoparticles; Non Newtonian flow; Non Newtonian liquids; Rheology; Shear flow; Viscosity, Electromagnetics; Electrorheological; Electrorheological effect; Nanofluids; Non-Newtonian fluids; Particle loading; Possible mechanisms; Propagation media, Nanofluidics
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 09 Nov 2023 16:20
Last Modified: 09 Nov 2023 16:20
URI: https://khub.utp.edu.my/scholars/id/eprint/8733

Actions (login required)

View Item
View Item