Xia, L. and Farooq, M.U. and Bell, I.M. (2015) High level fault modeling of analog circuits through automated model generation using Chebyshev and Newton interpolating polynomials. Analog Integrated Circuits and Signal Processing, 82 (1). pp. 265-283. ISSN 09251030
Full text not available from this repository.Abstract
With the help of automated model generation (AMG), high level modeling (HLM) of analog circuits is able to provide useful speedup and acceptable accuracy compared with standard SPICE-level circuit simulation. Unfortunately, this is not the case for high level fault modeling (HLFM) and high level fault simulation (HLFS). This is still a critical issue that industry is facing in reducing analog testing cost. We present a novel algorithm using a fusion of Chebyshev and Newton interpolating polynomials (CNIP) in nonlinear state-space (ss) termed AMG-CNIP for HLFM in analog circuits. It is written in MATLAB and the hardware description language (HDL) VHDL-AMS, respectively. The properties of AMG-CNIP are investigated by modeling nonlinear transmission line circuits using transient analysis. Results show that the AMG-CNIP models can handle both linear and nonlinear fault simulations with reasonable accuracy, and simulation speedup is achieved compared to standard SPICE-level simulations. © 2014, Springer Science+Business Media New York.
Item Type: | Article |
---|---|
Additional Information: | cited By 2 |
Uncontrolled Keywords: | Analog circuits; Automation; Computer hardware description languages; Electric lines; Interpolation; MATLAB; Polynomials; State space methods; Timing circuits; Transient analysis; Transmissions, Automated model generations; Chebyshev polynomials; High-level fault models; Newton polynomials; Nonlinear transmission lines; VHDL-AMS, SPICE |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 09 Nov 2023 16:18 |
Last Modified: | 09 Nov 2023 16:18 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/6361 |