Abusaibaa, G.Y. and Sopian, K. and Maiber, A.A.K. (2023) Energy Efficiency Enhancement of Solar-Powered PV Cooling System with PCM Storage Tank. International Journal of Renewable Energy Research, 13 (4). pp. 1661-1668.
Full text not available from this repository.Abstract
The energy consumption of air conditioning systems has been rising over time. The adoption of solar-powered cooling technologies is being considered as a solution since they efficiently employ the energy that is currently available. In this work, the effectiveness of a phase change material (PCM) storage tank-connected vapour compression cooling system powered by photovoltaic (PV) energy were examined. The study focused on PV vapour compression with a PCM storage tank and an air-conditioned space chilled by ice gel circulation, a transparent membrane/desiccant, and fan coil dehumidification. The study used the TRNSYS, TRNBuild, and EES programmes to determine the best indoor temperature and humidity for a PV-powered vapour compression cooling system. The first simulation was conducted for the room without cooling, which reached a temperature of 32.58°C at 4146 hours of the year (June) Following that, the simulation for the developer's PV-powered vapour compression cooling system was run, and the coefficient of performance (COP) was calculated. It is noteworthy that the heat pump operates for 9 hours, while the system operates for 24 hours, depending on the cooling requirement, achieving room temperatures of 22.3 °C at 414 hours of the year. The relative humidity inside the building with the cooling system was approximately 59.2. In addition, the lowest room dew point temperature was 14.9 °C at 4144.50 hours of operation. Moreover, at the same operating time, the system has a higher COP of 13.3. Overall, combining a vapour-compression air conditioning system with PCM storage improves system performance. This study utilised a comprehensive approach to assess the efficacy of a photovoltaic-powered vapour compression cooling system connected to a storage tank containing phase change material. Various methodologies and techniques were employed for this purpose, such as TRNSYS, TRNBuild, and EES software. The COP of the developed PV-powered vapour compression cooling system was calculated through simulation. The results have implications for addressing the rising energy consumption of air conditioning systems. The study examines the potential of a PV-powered vapour compression cooling system as a solution to the increasing energy demands for cooling. The results suggest a potential alternative to traditional air conditioning systems that could reduce energy consumption and promote sustainability in the built environment. © (2023), (International Journal of Renewable Energy Research). All Rights Reserved.
Item Type: | Article |
---|---|
Additional Information: | cited By 0 |
Uncontrolled Keywords: | Computer software; Cooling; Cooling systems; Energy efficiency; Energy utilization; Humidity control; Phase change materials; Solar energy; Storage (materials); Tanks (containers); Thermoelectric equipment, Chilled ceiling; Conditioning systems; Ice gel; Phase change material storages; Photovoltaic panels; Photovoltaics; Storage tank; Trnbuild; TRNSYS; Vapor compression cooling, Air conditioning |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 04 Jun 2024 14:11 |
Last Modified: | 04 Jun 2024 14:11 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/18934 |