Dry-Low Emission Gas Turbine Technology: Recent Trends and Challenges

Faqih, M. and Omar, M.B. and Ibrahim, R. and Omar, B.A.A. (2022) Dry-Low Emission Gas Turbine Technology: Recent Trends and Challenges. Applied Sciences (Switzerland), 12 (21). ISSN 20763417

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Dry-low emission (DLE) is one of the cleanest combustion types used in a gas turbine. DLE gas turbines have become popular due to their ability to reduce emissions by operating in lean-burn operation. However, this technology leads to challenges that sometimes interrupt regular operations. Therefore, this paper extensively reviews the development of the DLE gas turbine and its challenges. Numerous online publications from various databases, including IEEE Xplore, Scopus, and Web of Science, are compiled to describe the evolution of gas turbine technology based on emissions, fuel flexibility, and drawbacks. Various gas turbine models, including physical and black box models, are further discussed in detail. Working principles, fuel staging mechanisms, and advantages of DLE gas turbines followed by common faults that lead to gas turbine tripping are specifically discussed. A detailed evaluation of lean blow-out (LBO) as the major fault is subsequently highlighted, followed by the current methods in LBO prediction. The literature confirms that the DLE gas turbine has the most profitable features against other clean combustion methods. Simulation using Rowen�s model significantly imitates the actual behavior of the DLE gas turbine that can be used to develop a control strategy to maintain combustion stability. Lastly, the data-driven LBO prediction method helps minimize the flame�s probability of a blow-out. © 2022 by the authors.

Item Type: Article
Additional Information: cited By 6
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 19 Dec 2023 03:22
Last Modified: 19 Dec 2023 03:22
URI: https://khub.utp.edu.my/scholars/id/eprint/16225

Actions (login required)

View Item
View Item