Optimization and Modelling of Resistance Spot Welding Process Parameters for Quality Improvement Using Taguchi Method and Artificial Neural Network

Soomro, I.A. and Pedapati, S.R. and Awang, M. and Soomro, A.A. and Alam, M.A. and Bhayo, B.A. (2022) Optimization and Modelling of Resistance Spot Welding Process Parameters for Quality Improvement Using Taguchi Method and Artificial Neural Network. Iranian Journal of Materials Science and Engineering, 19 (4). pp. 1-10. ISSN 17350808

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

This paper investigated the optimization, modeling, and effect of welding parameters on the tensile shear load-bearing capacity of double pulse resistance spot-welded DP590 steel. Optimization of welding parameters was performed using the Taguchi design of experiment method. A relationship between input welding parameters i.e., second pulse welding current, second pulse welding current time, and first pulse holding time and output response i.e, tensile shear peak load was established using regression and neural network. Results showed that the maximum average tensile shear peak load of 26.47 was achieved at optimum welding parameters i.e., second pulse welding current of 7.5 kA, second pulse welding time of 560 ms, and first pulse holding time of 400 ms. It was also found that the ANN model predicted the tensile shear load with higher accuracy than the regression model. © 2022, Iran University of Science and Technology. All rights reserved.

Item Type: Article
Additional Information: cited By 0
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 19 Dec 2023 03:22
Last Modified: 19 Dec 2023 03:22
URI: https://khub.utp.edu.my/scholars/id/eprint/16103

Actions (login required)

View Item
View Item