Optimization of thermophysical and rheological properties of mxene ionanofluids for hybrid solar photovoltaic/thermal systems

Bakthavatchalam, B. and Habib, K. and Saidur, R. and Aslfattahi, N. and Yahya, S.M. and Rashedi, A. and Khanam, T. (2021) Optimization of thermophysical and rheological properties of mxene ionanofluids for hybrid solar photovoltaic/thermal systems. Nanomaterials, 11 (2). pp. 1-28. ISSN 20794991

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Since technology progresses, the need to optimize the thermal system�s heat transfer efficiency is continuously confronted by researchers. A primary constraint in the production of heat transfer fluids needed for ultra-high performance was its intrinsic poor heat transfer properties. MXene, a novel 2D nanoparticle possessing fascinating properties has emerged recently as a potential heat dissipative solute in nanofluids. In this research, 2D MXenes (Ti3C2) are synthesized via chemical etching and blended with a binary solution containing Diethylene Glycol (DEG) and ionic liquid (IL) to formulate stable nanofluids at concentrations of 0.1, 0.2, 0.3 and 0.4 wt. Furthermore, the effect of different temperatures on the studied liquid�s thermophysical characteristics such as thermal conductivity, density, viscosity, specific heat capacity, thermal stability and the rheological property was experimentally conducted. A computational analysis was performed to evaluate the impact of ionic liquid-based 2D MXene nanofluid (Ti3C2/DEG+IL) in hybrid photovoltaic/thermal (PV/T) systems. A 3D numerical model is developed to evaluate the thermal efficiency, electrical efficiency, heat transfer coefficient, pumping power and temperature distribution. The simulations proved that the studied working fluid in the PV/T system results in an enhancement of thermal efficiency, electrical efficiency and heat transfer coefficient by 78.5, 18.7 and 6, respectively. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Item Type: Article
Additional Information: cited By 31
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 10 Nov 2023 03:29
Last Modified: 10 Nov 2023 03:29
URI: https://khub.utp.edu.my/scholars/id/eprint/15230

Actions (login required)

View Item
View Item