Maintenance policy selection model – a case study in the palm oil industry Academic Article uri icon

abstract

  • Purpose – An optimal maintenance policy is key to the improvement of the availability and reliability of a system at an acceptable level without a significant increase in investment. However, the selection process is a complicated task because it requires in-depth knowledge on maintenance policies and on the technical requirements of maintenance. The difficulties and complexity of the selection process arise from the combination of conflicting maintenance constraints such as available spares, size of workforce, and maintenance skills. The paper aims to discuss these issues. Design/methodology/approach – The proposed maintenance policy selection (MPS) model is separated into three major phases. The first phase identifies the critical system (CS) based on failure frequency. The failure mechanism in the CS is then analyzed by using a failure mode and effect analysis in the second phase. In the third phase, a multi-criteria decision making method, called the technique for order of preference by similarity to ideal solution, is adopted to identify an optimal maintenance policy that can minimize the failures. Findings – Through a case study, preventive maintenance was selected as the optimal maintenance policy for the reduction of system failures. The results obtained from the case study not only provide evidence of the feasibility and practicability of the developed model, but also test the acceptability and rationale of the developed model from the industry perspective. Valuable knowledge and experience from employees were extracted and utilized through the proposed model to rank the optimal maintenance policy based on the capability to reduce failure. Originality/value – The practicality of the MPS model is justified through an implementation in the palm oil industry. The application of the MPS model can also be extended to other manufacturing industries.

publication date

  • 2014

number of pages

  • 20

start page

  • 415

end page

  • 435

volume

  • 25

issue

  • 3