Prediction of dynamic responses of floating structures using NARX with mirroring technique Academic Article uri icon

abstract

  • Displacements, velocities and accelerations of Six Degree of freedom of a single floating structure was predicted using Time Series NARX feedback neural Networks. The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent dynamic network, with feedback connections enclosing several layers of the network is based on the linear ARX model, which is commonly used in time-series modelling is used in this study. Time series data of displacements of a single floating structure was used for training and testing the ANN model. In the training stage, this time series data of environment parameters was used as input and dynamic responses was used as target. Benchmarking result and error prediction was compared between two techniques of Neural Network training. The prediction result of the model responses can be concluded that NARX with mirroring technique increase the accuracy and can be used to predict time series of dynamic responses of floating structures.

publication date

  • 2018

start page

  • 01025

volume

  • 203