Predictive Stress-Strain Models for High Strength Concrete Subjected to Uniaxial Compression Academic Article uri icon

abstract

  • To date, various predictive models for high strength concrete (HSC) have been proposed that are capable of generating complete stress-strain curves. These models were validated for HSC prepared with and without silica fume. In this paper, an investigation on these predictive models has been presented by applying them on two different series of HSC. The first series of HSC was prepared by utilizing 100% cement content, while second series was prepared by utilizing 90% cement and 10% Metakaolin. The compressive strength of the concrete was ranged from 71-87 MPa. For each series of HSC, total four cylinders of the size 100×200mm were cast to obtain the stress-strain curves at 28 days.It has been found that the pattern of the stress-strain curve of each cylinder among four cylinders of each series was different from other, in spite of preparing from the similar batch. When predictive models were applied to these cylinders using their test data then it was found that all models more or less deficient to accurately predict the stress-strain behavior.

publication date

  • 2014

number of pages

  • 5

start page

  • 476

end page

  • 481

volume

  • 567