relation: https://khub.utp.edu.my/scholars/8383/ title: Stress Assessment Based on Decision Fusion of EEG and fNIRS Signals creator: Al-Shargie, F. creator: Tang, T.B. creator: Kiguchi, M. description: Fusion of electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) is an emerging approach in the field of psychological and neurological studies. We developed a decision fusion technique to combine the output probabilities of the EEG and fNIRS classifiers. The fusion explored support vector machine as classifier for each modality, and optimized the classifiers based on their receiver operating characteristic curve values. EEG and fNIRS signal were acquired simultaneously while performing mental arithmetic task under control and stress conditions. Experiment results from 20 subjects demonstrated significant improvement in the detection rate of mental stress by +7.76 ( p<0.001) and +10.57 ( p<0.0005), compared with sole modality of EEG and fNIRS, respectively. © 2013 IEEE. publisher: Institute of Electrical and Electronics Engineers Inc. date: 2017 type: Article type: PeerReviewed identifier: Al-Shargie, F. and Tang, T.B. and Kiguchi, M. (2017) Stress Assessment Based on Decision Fusion of EEG and fNIRS Signals. IEEE Access, 5. pp. 19889-19896. ISSN 21693536 relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030634505&doi=10.1109%2fACCESS.2017.2754325&partnerID=40&md5=8f187f3d8b0e0df4305a465b1637a258 relation: 10.1109/ACCESS.2017.2754325 identifier: 10.1109/ACCESS.2017.2754325