relation: https://khub.utp.edu.my/scholars/8355/ title: Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO2 to methanol creator: Din, I.U. creator: Shaharun, M.S. creator: Naeem, A. creator: Tasleem, S. creator: Johan, M.R. description: This article describes the synthesis of methanol by the direct hydrogenation of CO2 over Cu/ZrO2 catalyst at different ZrO2 concentrations (5, 10, 15, 20 and 25 wt.) in a three-phase phase reactor. The techniques of N2 adsorption/desorption, x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy, temperature-programmed desorption by CO2, N2O chemisorption and inductively coupled plasma optical emission spectrometry were employed for catalyst characterization. At a reaction temperature of 180 °C, pressure of 3.0 MP and 0.020 g/mL of the catalyst, the conversion of CO2 and the yield of methanol were 10 and 25 g/kg.h, respectively. Surface area of the metallic copper was increased from 8.1 to 9.5 m2/g with the presence of ZrO2 from 5 to 15 wt.. The methanol turnover frequency exhibited a linear relationship with ZrO2 concentration. Methanol synthesis rate was progressively increased with increasing fraction of dispersed copper. A comparative study with the literature revealed better activity of this novel catalyst at relatively low reaction conditions. publisher: Elsevier Ltd date: 2017 type: Article type: PeerReviewed identifier: Din, I.U. and Shaharun, M.S. and Naeem, A. and Tasleem, S. and Johan, M.R. (2017) Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO2 to methanol. Journal of CO2 Utilization, 21. pp. 145-155. ISSN 22129820 relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85024928908&doi=10.1016%2fj.jcou.2017.07.010&partnerID=40&md5=3c60dc4c6dcfacbaf3934353ec67ec62 relation: 10.1016/j.jcou.2017.07.010 identifier: 10.1016/j.jcou.2017.07.010