eprintid: 8304 rev_number: 2 eprint_status: archive userid: 1 dir: disk0/00/00/83/04 datestamp: 2023-11-09 16:20:11 lastmod: 2023-11-09 16:20:11 status_changed: 2023-11-09 16:12:19 type: article metadata_visibility: show creators_name: Harilal, M. creators_name: Krishnan, S.G. creators_name: Yar, A. creators_name: Misnon, I.I. creators_name: Reddy, M.V. creators_name: Yusoff, M.M. creators_name: Dennis, J.O. creators_name: Jose, R. title: Pseudocapacitive charge storage in single-step-synthesized CoO-MnO2-MnCo2O4 hybrid nanowires in aqueous alkaline electrolytes ispublished: pub keywords: Activated carbon; Capacitance; Cobalt compounds; Electric batteries; Electrodes; Electrolytes; Manganese oxide; Nanowires; Potassium hydroxide; Supercapacitor, Asymmetric supercapacitor; Commercial activated carbons; Conventional batteries; High electrical conductivity; Structure property relationships; Supercapacitor electrodes; Volumetric energy densities; Volumetric power density, Electrolytic capacitors note: cited By 68 abstract: A new pseudocapacitive combination, viz. CoO-MnO2-MnCo2O4 hybrid nanowires (HNWs), is synthesized using a facile single-step hydrothermal process, and its properties are benchmarked with conventional battery-type flower-shaped MnCo2O4 obtained by similar processing. The HNWs showed high electrical conductivity and specific capacitance (Cs) (1650 F g-1 or 184 mA h g-1 at 1 A g-1) with high capacity retention, whereas MnCo2O4 nanoflower electrode showed only one-third conductivity and one-half of its capacitance (872 F g-1 or 96 mA h g-1 at 1 A g-1) when used as a supercapacitor electrode in 6 M KOH electrolyte. The structure-property relationship of the materials is deeply investigated and reported herein. Using the HNWs as a pseudocapacitive electrode and commercial activated carbon as a supercapacitive electrode we achieved battery-like specific energy (Es) and supercapacitor-like specific power (Ps) in aqueous alkaline asymmetric supercapacitors (ASCs). The HNWs ASCs have shown high Es (90 Wh kg- ) (volumetric energy density Ev 0.52 Wh cm- ) with Ps up to ~104 W kg-1 (volumetric power density Pv 5 W cm-3) in 6 M KOH electrolyte, allowing the device to store an order of magnitude more energy than conventional supercapacitors. © 2017 American Chemical Society. date: 2017 publisher: American Chemical Society official_url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032893914&doi=10.1021%2facs.jpcc.7b06630&partnerID=40&md5=8673628f1dc7d96d92bee50f25aa0f59 id_number: 10.1021/acs.jpcc.7b06630 full_text_status: none publication: Journal of Physical Chemistry C volume: 121 number: 39 pagerange: 21171-21183 refereed: TRUE issn: 19327447 citation: Harilal, M. and Krishnan, S.G. and Yar, A. and Misnon, I.I. and Reddy, M.V. and Yusoff, M.M. and Dennis, J.O. and Jose, R. (2017) Pseudocapacitive charge storage in single-step-synthesized CoO-MnO2-MnCo2O4 hybrid nanowires in aqueous alkaline electrolytes. Journal of Physical Chemistry C, 121 (39). pp. 21171-21183. ISSN 19327447