%0 Journal Article %@ 09544062 %A Verma, P. %A Chatterjee, D. %A Nagarajan, T. %D 2009 %F scholars:739 %J Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science %K Conical diffusers; Control electronics; Design and Development; Electronic cooling; Fluidic components; Input voltages; Integrated cooling; Integrated thermal management systems; Maximum flowrate; Maximum power; Micro pumps; Mini channels; Modular; Modular units; Piezoelectric; Piezoelectric actuations; Power levels; Pressure heads; Pulsating flows; Signal conditioning; Surface temperatures; Valveless micropump; Working fluids, Cooling; Cooling systems; Electromagnetic wave emission; Ethanol; Heat sinks; Piezoelectric transducers; Piezoelectricity; Printed circuit design; Printed circuit manufacture; Pumps; Temperature control, Printed circuit boards %N 4 %P 953-963 %R 10.1243/09544062JMES1315 %T Design and development of a modular valveless micropump on a printed circuit board for integrated electronic cooling %U https://khub.utp.edu.my/scholars/739/ %V 223 %X With constraints on size, cost, reliability, and performance for liquid-based cooling systems, the design of modular micropumps suitable for an integrated thermal management system still remains a challenge. In this paper, the effectiveness of a low-cost valveless micropump-heat exchanger on a printed circuit board is investigated for electronic cooling. Signal conditioning and control electronics are integrated with the fluidic components on the substrate to form a compact modular unit. Piezoelectric actuation and conical diffusers are utilized to generate pulsating flow through a minichannel heat sink. With ethanol as the working fluid, the tested pump reached a maximum flowrate and a pressure head of 2.4 ml/min and 743 Pa at an input voltage of 6 VDC. Suitability of the system for active real-time temperature control has been demonstrated at two input heater power levels of 1.45 and 2.5W A maximum reduction of 57 per cent in the average heat sink surface temperature could be achieved at a maximum power consumption of 150 mW by the micropump. © IMechE 2009. %Z cited By 23