TY  - CONF
SP  - 787
PB  - IEEE Computer Society
A1  - Muhammad, M.
A1  - Mohammadreza, T.B.
A1  - Karim, Z.A.A.
SN  - 21573611
KW  - Condition monitoring; Gas turbines
KW  -  Condition based maintenance; Data-driven prognostics; Equipment performance; Industrial gas turbines; Maintenance strategies; Monitoring applications; performance prognostic; Recurrent neural network (RNN)
KW  -  Recurrent neural networks
TI  - Methodology for short-term performance prognostic of gas turbine using recurrent neural network
Y1  - 2016///
N1  - cited By 12; Conference of IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2015 ; Conference Date: 6 December 2015 Through 9 December 2015; Conference Code:119262
AV  - none
ID  - scholars7242
N2  - The issue of performance prognosis has been a topic of considerable interest in industrial condition monitoring applications. An innovative data driven prognostic methodology has been introduced in the current study by utilizing artificial recurrent neural network (RNN) approach which intends to improve the capability of equipment performance prediction within a specified short time bound even with limited available data. The ability of the approach is demonstrated using condition monitoring parameters collected from a 20 MW industrial gas turbine. An appropriate selection and fusion of measured variables has been employed to feed RNN with the most influential performance information. The analysis demonstrated that the developed prognostic approach has a great potential to provide an accurate short term forecast of equipment performance which can be invaluable for maintenance strategy and planning. © 2015 IEEE.
UR  - https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961990540&doi=10.1109%2fIEEM.2015.7385755&partnerID=40&md5=9133895e419a5db8ad4ab7fc810ffef5
VL  - 2016-J
EP  - 791
ER  -