eprintid: 691 rev_number: 2 eprint_status: archive userid: 1 dir: disk0/00/00/06/91 datestamp: 2023-11-09 15:48:50 lastmod: 2023-11-09 15:48:50 status_changed: 2023-11-09 15:22:58 type: conference_item metadata_visibility: show creators_name: Khan, A. creators_name: Khan, K. creators_name: Baharudin, B.B. title: Frequent patterns minning of stock data using hybrid clustering association algorithm ispublished: pub keywords: Clustering; Dead-stock (DS); Fast-moving (FM); Most frequent patterns (MFP); Slow-moving(SM), Competition; Decision making; Dielectric relaxation; Information management; Strategic planning, Clustering algorithms note: cited By 6; Conference of 2009 International Conference on Information Management and Engineering, ICIME 2009 ; Conference Date: 3 April 2009 Through 5 April 2009; Conference Code:77334 abstract: Patterns and classification of stock or inventory data is very important for business support and decision making. Timely identification of newly emerging trends is also needed in business process. Sales patterns from inventory data indicate market trends and can be used in forecasting which has great potential for decision making, strategic planning and market competition. The objectives in this research are to get better decision making for improving sale, services and quality as to identify the reasons of dead stock, slow-moving, and fast-moving products which is useful mechanism for business support, investment and surveillance. In this paper we proposed an algorithm for mining patterns of huge stock data to predict factors affecting the sale of products. In the first phase, we divide the stock data in three different clusters on the basis of product categories and sold quantities i.e. Dead-Stock (DS), Slow-Moving (SM) and Fast-Moving (FM) using K-means algorithm. In the second phase we have proposed Most Frequent Pattern (MFP) algorithm to find frequencies of property values of the corresponding items. MFP provides frequent patterns of item attributes in each category of products and also gives sales trend in a compact form. The experimental result shows that the proposed hybrid k-mean plus MFP algorithm can generate more useful pattern from large stock data. © 2009 IEEE. date: 2009 official_url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349485088&doi=10.1109%2fICIME.2009.129&partnerID=40&md5=618a0b8aa30f01efd6615affe38af1e6 id_number: 10.1109/ICIME.2009.129 full_text_status: none publication: Proceedings - 2009 International Conference on Information Management and Engineering, ICIME 2009 place_of_pub: Kuala Lumpur pagerange: 667-671 refereed: TRUE isbn: 9780769535951 citation: Khan, A. and Khan, K. and Baharudin, B.B. (2009) Frequent patterns minning of stock data using hybrid clustering association algorithm. In: UNSPECIFIED.