%0 Conference Paper %A Alkali, A.U. %A Ginta, T.L. %A Abdul-Rani, A.M. %D 2015 %F scholars:6352 %I Institute of Physics Publishing %K Atmospheric temperature; Engineering education; Finite element method; Temperature; Temperature distribution, 3-D finite elements; 316 L stainless steel; Experimental investigations; Experimental validations; Finite element modelling; Surface temperature distribution; Type 316L stainless steel; Workpiece temperature, Stainless steel %N 1 %R 10.1088/1757-899X/78/1/012025 %T Experimental investigation and 3D finite element prediction of temperature distribution during travelling heat sourced from oxyacetylene flame %U https://khub.utp.edu.my/scholars/6352/ %V 78 %X This paper presents a 3D transient finite element modelling of the workpiece temperature field produced during the travelling heat sourced from oxyacetylene flame. The proposed model was given in terms of preheat-only test applicable during thermally enhanced machining using the oxyacetylene flame as a heat source. The FEA model as well as the experimental test investigated the surface temperature distribution on 316L stainless steel at scanning speed of 100mm/min, 125mm/min 160mm/min, 200mm/min and 250mm/min. The parametric properties of the heat source maintained constant are; lead distance Ld =10mm, focus height Fh=7.5mm, oxygen gas pressure Poxy=15psi and acetylene gas pressure Pacty=25psi. An experimental validation of the temperature field induced on type 316L stainless steel reveal that temperature distribution increases when the travelling speed decreases. © Published under licence by IOP Publishing Ltd. %Z cited By 0; Conference of 9th Curtin University of Technology Science and Engineering International Conference 2014: Discovering, Innovating and Engineering, CUTSE 2014 ; Conference Date: 3 December 2014 Through 4 December 2014; Conference Code:111770