eprintid: 6335
rev_number: 2
eprint_status: archive
userid: 1
dir: disk0/00/00/63/35
datestamp: 2023-11-09 16:18:06
lastmod: 2023-11-09 16:18:06
status_changed: 2023-11-09 16:05:43
type: article
metadata_visibility: show
creators_name: Mustafa, M.R.
creators_name: Rezaur, R.B.
creators_name: Rahardjo, H.
creators_name: Isa, M.H.
creators_name: Arif, A.
title: Artificial neural network modeling for spatial and temporal variations of pore-water pressure responses to rainfall
ispublished: pub
note: cited By 11
abstract: Knowledge of spatial and temporal variations of soil pore-water pressure in a slope is vital in hydrogeological and hillslope related processes (i.e., slope failure, slope stability analysis, etc.). Measurements of soil pore-water pressure data are challenging, expensive, time consuming, and difficult task. This paper evaluates the applicability of artificial neural network (ANN) technique for modeling soil pore-water pressure variations at multiple soil depths from the knowledge of rainfall patterns. A multilayer perceptron neural network model was constructed using Levenberg-Marquardt training algorithm for prediction of soil pore-water pressure variations. Time series records of rainfall and pore-water pressures at soil depth of 0.5 m were used to develop the ANN model. To investigate applicability of the model for prediction of spatial and temporal variations of pore-water pressure, the model was tested for the time series data of pore-water pressure at multiple soil depths (i.e., 0.5 m, 1.1 m, 1.7 m, 2.3 m, and 2.9 m). The performance of the ANN model was evaluated by root mean square error, mean absolute error, coefficient of correlation, and coefficient of efficiency. The results revealed that the ANN performed satisfactorily implying that the model can be used to examine the spatial and temporal behavior of time series of pore-water pressures with respect to multiple soil depths from knowledge of rainfall patterns and pore-water pressure with some antecedent conditions. © 2015 M. R. Mustafa et al.
date: 2015
publisher: Hindawi Publishing Corporation
official_url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929352872&doi=10.1155%2f2015%2f273730&partnerID=40&md5=0a235d665d6e2eb7a55b78f0993f5243
id_number: 10.1155/2015/273730
full_text_status: none
publication: Advances in Meteorology
volume: 2015
refereed: TRUE
issn: 16879309
citation:   Mustafa, M.R. and Rezaur, R.B. and Rahardjo, H. and Isa, M.H. and Arif, A.  (2015) Artificial neural network modeling for spatial and temporal variations of pore-water pressure responses to rainfall.  Advances in Meteorology, 2015.   ISSN 16879309