relation: https://khub.utp.edu.my/scholars/6013/ title: New approaches to the modelling of multi-component fuel droplet heating and evaporation creator: Sazhin, S.S. creator: Elwardany, A.E. creator: Heikal, M.R. description: The previously suggested quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close n are replaced by quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of the heating and evaporation of droplets consisting of many components is replaced with the analysis of the heating and evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are almost indistinguishable from the predictions of the model based on twenty quasi-components for Diesel fuel droplets and are very close to the predictions of the model based on thirteen quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based on as little as five quasi-components. publisher: Institute of Physics Publishing date: 2015 type: Conference or Workshop Item type: PeerReviewed identifier: Sazhin, S.S. and Elwardany, A.E. and Heikal, M.R. (2015) New approaches to the modelling of multi-component fuel droplet heating and evaporation. In: UNSPECIFIED. relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957807702&doi=10.1088%2f1742-6596%2f585%2f1%2f012014&partnerID=40&md5=611c5ef855ea9dfac1dc959e30fdce10 relation: 10.1088/1742-6596/585/1/012014 identifier: 10.1088/1742-6596/585/1/012014