TY - JOUR JF - Engineering Science and Technology, an International Journal TI - Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite EP - 373 IS - 3 N1 - cited By 94 SN - 22150986 SP - 369 UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017359809&doi=10.1016%2fj.jestch.2015.01.007&partnerID=40&md5=3b285016e76d66d566ae28cb3166d343 A1 - Talla, G. A1 - Sahoo, D.K. A1 - Gangopadhyay, S. A1 - Biswas, C.K. PB - Elsevier B.V. AV - none VL - 18 Y1 - 2015/// ID - scholars5766 N2 - Low material removal rate (MRR) and high surface roughness values hinder large-scale application of electro discharge machining (EDM) in the fields like automobile, aerospace and medical industry. In recent years, however, EDM has gained more significance in these industries as the usage of difficult-to-machine materials including metal matrix composites (MMCs) increased. In the present work, an attempt has been made to fabricate and machine aluminum/alumina MMC using EDM by adding aluminum powder in kerosene dielectric. Results showed an increase in MRR and decrease in surface roughness (Ra) compared to those for conventional EDM. Semi empirical models for MRR and Ra based on machining parameters and important thermo physical properties were established using a hybrid approach of dimensional and regression analysis. A multi response optimization was also performed using principal component analysis-based grey technique (Grey-PCA) to determine optimum settings of process parameters for maximum MRR and minimum Ra within the experimental range. The recommended setting of process parameters for the proposed process has been found to be powder concentration (Cp) = 4 g/l, peak current (Ip) = 3 A, pulse on time (Ton) = 150 μs and duty cycle (Tau) = 85. © 2015 Karabuk University ER -