eprintid: 2360 rev_number: 2 eprint_status: archive userid: 1 dir: disk0/00/00/23/60 datestamp: 2023-11-09 15:50:34 lastmod: 2023-11-09 15:50:34 status_changed: 2023-11-09 15:42:35 type: article metadata_visibility: show creators_name: Chee, K.L. creators_name: Mohd Zabidi, N.A. creators_name: Mohan, C. title: Synthesis of cobalt nano particles on silica support using the strong electrostatic adsorption (SEA) method ispublished: pub keywords: Adsorption; Cobalt; Cobalt compounds; Electrostatics; Fischer-Tropsch synthesis; Heat transfer; High temperature operations; Mass transfer; Nanoparticles; Particle size; Particle size analysis; Silica; Transmission electron microscopy; X ray photoelectron spectroscopy; Diffusion in solids, Catalyst precursors; High temperature; Point of zero charge; Precursor solutions; Strong electrostatic adsorptions; Strong interaction; Supported cobalt catalyst; Supported on silica, Catalyst supports note: cited By 6 abstract: Supported cobalt is one of the common catalysts used in Fischer-Tropsch synthesis (FTS). Strong electrostatic adsorption (SEA) was employed to synthesize cobalt nano particles supported on silica. Cobalt nitrate was used as the catalyst precursor and non-porous silica spheres, which were synthesized using the modified Stöber method, were used as a catalyst support. Point of zero charge (PZC) for silica was determined using equilibrium pH at high oxide loading (EpHL) method. The optimum pH was determined by measuring cobalt uptake versus pH. High cobalt uptake at basic pH and low cobalt uptake at acidic pH indicates electrostatic interaction between the cobalt complexes in the precursor solution and the hydroxyl group on the support's surface. Catalysts prepared at optimum pH were characterized using TPR, XPS and TEM. TPR shows reduction peak at high temperature (587°C) indicating strong interaction between cobalt and silica support. XPS shows presence of Co2+ species on the surface. TEM images of the Co/SiO2 at 5 wt and 10 wt cobalt loadings show fairly well-dispersed cobalt oxide nano particles on the spherical silica support with narrow particle size distribution. The findings suggest that SEA was deemed a suitable method to prepare supported cobalt catalysts. © (2011) Trans Tech Publications. date: 2011 publisher: Trans Tech Publications Ltd official_url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955822446&doi=10.4028%2fwww.scientific.net%2fDDF.312-315.370&partnerID=40&md5=18594be0e17afb9dfe0dbe25712bd5a7 id_number: 10.4028/www.scientific.net/DDF.312-315.370 full_text_status: none publication: Defect and Diffusion Forum volume: 312-31 pagerange: 370-375 refereed: TRUE isbn: 9783037851173 issn: 10120386 citation: Chee, K.L. and Mohd Zabidi, N.A. and Mohan, C. (2011) Synthesis of cobalt nano particles on silica support using the strong electrostatic adsorption (SEA) method. Defect and Diffusion Forum, 312-31. pp. 370-375. ISSN 10120386