%X Nanocomposite electrodes of recently identified polyanion cathode materials comprising Li x M2(MoO4)3 0� �x�<�3 M�=�Co, Ni and nanosized carbon having ~10 nm particle size were found to show remarkable improvement in their discharge capacity compared to the one prepared with acetylene black. The addition of nanosized carbon as a conductive additive offered improved initial discharge capacity of 121 mAh/g between 3.5-2.0 V vs Li/Li. The cause for such an increase could be firmly attributed to the filling up of the grain-grain contact area of the active material, facilitating the intimate grain-grain contacts in the composite structure leading to enhanced capacity delivery. As for the nanocomposite Li x Co2(MoO4)3, it was found that at least 55% of its first discharge capacity was retained at the end of 20th cycle compared to its analogous counterpart, Li x Ni 2(MoO4)3. © 2007 Springer-Verlag.
%V 13
%L scholars233
%D 2007
%N 6
%T Enhanced cycling properties of transition metal molybdates, Li x M2(MoO4)3 0�x�<�3 M�=�Co,Ni: A nanocomposite approach for lithium batteries
%J Ionics
%A K.M. Begam
%A M.S. Michael
%A S.R.S. Prabaharan
%R 10.1007/s11581-007-0140-9
%K Carbon black; Composite structures; Electrodes; Nanocomposites; Nickel; Transition metal compounds, Active material; Discharge capacity; Mesoporous carbon black; Nanocomposite electrodes; Polyanion cathode materials, Lithium batteries
%P 467-471
%O cited By 2