eprintid: 20399 rev_number: 3 eprint_status: archive userid: 1 dir: disk0/00/02/03/99 datestamp: 2025-11-06 06:22:44 lastmod: 2025-11-06 06:22:44 status_changed: 2025-11-06 06:22:44 type: article metadata_visibility: show creators_name: Radzman, Muhammad Iqmmal Rezzwan creators_name: Mahamad, Abd Kadir Bin creators_name: Muji, Siti Zarina Mohd creators_name: Saon, Sharifah creators_name: Ahmadon, Mohd Anuaruddin creators_name: Yamaguchi, Shingo creators_name: Setiawan, Muhammad Ikhsan title: Pipe leakage detection system with artificial neural network ispublished: pub note: Cited by: 3; All Open Access, Gold Open Access, Green Open Access date: 2022 publisher: Institute of Advanced Engineering and Science official_url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132394464&doi=10.11591%2fijai.v11.i3.pp977-985&partnerID=40&md5=00207ca516369e360c9f6edec5ba1749 id_number: 10.11591/ijai.v11.i3.pp977-985 full_text_status: none publication: IAES International Journal of Artificial Intelligence volume: 11 number: 3 pagerange: 977 – 985 refereed: TRUE issn: 20894872 citation: Radzman, Muhammad Iqmmal Rezzwan and Mahamad, Abd Kadir Bin and Muji, Siti Zarina Mohd and Saon, Sharifah and Ahmadon, Mohd Anuaruddin and Yamaguchi, Shingo and Setiawan, Muhammad Ikhsan (2022) Pipe leakage detection system with artificial neural network. IAES International Journal of Artificial Intelligence, 11 (3). 977 – 985. ISSN 20894872