TY - JOUR N1 - cited By 0 N2 - The growing global proliferation of plastic waste and sewage sludge (SS) has emerged as a prominent environmental dilemma. This study assessed the efficacy of highly efficient carbon-based adsorbent materials derived from co-pyrolysis of SS and plastic waste in mitigating the concentration of ciprofloxacin (CPX) in an aqueous solution. Each formulated material included varying proportionsâ??20 and 50â??of either polyethylene (PE) or polyethylene terephthalate (PET). Notably, composite with PETâ??50 exhibited a significant increase in specific surface area to 194.7 m2/g. Efficient adsorption of CPX up to 113.97 mg/g (qms) was reported at pH 5. Pollutant removal was recorded in 12 hours of retention time due to induced Ï?â??Ï? interactions, electrostatic and hydrophobic surface interactions highlighting chemosorption. The alkaline pH impacted the adsorption capacity, causing a prominent decline. The SS-PET formulation exhibited a substantial increase in the number of active sites, thereby showing a strong interaction with ionized CPX molecules and yielding superior sorption efficiency by utilizing the novel combination of the material. The regenerative investigations also confirmed the high adsorption for four consistent cycles. Overall, acquiring comprehensive knowledge and practical information from this study will contribute to the effective management of CPX-contaminated wastewater and the mitigation of plastic pollution. © 2024 The Institution of Chemical Engineers KW - Adsorption; Alkalinity; Hydrophobicity; Plastic bottles; Pyrolysis; Sewage sludge; Surface chemistry KW - Adsorbent materials; Biochar; Carbon based adsorbents; Ciprofloxacin; Copyrolysis; Effective removals; Environment; Interfacial characteristics; Plastics waste; Pollutants removal KW - Antibiotics TI - The development of plastic waste and sewage sludge co-pyrolyzed biochar composites with improved interfacial characteristics for the effective removal of ciprofloxacin SP - 766 ID - scholars19759 AV - none UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185530849&doi=10.1016%2fj.psep.2024.02.035&partnerID=40&md5=d9b823955e3a2f0a2cde9f112c2ffaad JF - Process Safety and Environmental Protection A1 - Ashraf, A. A1 - Liu, G. A1 - Arif, M. A1 - Yousaf, B. A1 - Akhtar, P. A1 - Rashid, A. A1 - Gulzaman, H. A1 - Safeer, R. A1 - Rashid, M.S. A1 - Haider, M.I.S. VL - 184 EP - 781 Y1 - 2024/// ER -