relation: https://khub.utp.edu.my/scholars/19390/ title: Review of Adsorption Studies for Contaminant Removal from Wastewater Using Molecular Simulation creator: Hira, N.E. creator: Lock, S.S.M. creator: Shoparwe, N.F. creator: Lock, I.S.M. creator: Lim, L.G. creator: Yiin, C.L. creator: Chan, Y.H. creator: Hassam, M. description: In recent years, simulation studies have emerged as valuable tools for understanding processes. In particular, molecular dynamic simulations hold great significance when it comes to the adsorption process. However, comprehensive studies on molecular simulations of adsorption processes using different adsorbents are scarcely available for wastewater treatment covering different contaminants and pollutants. Hence, in this review, we organized the available information on various aspects of the adsorption phenomenon that were realized using molecular simulations for a broad range of potentially effective adsorbents applied in the removal of contaminants from wastewater. This review was compiled for adsorbents under five major categories: (1) carbon-based, (2) oxides and hydroxides, (3) zeolites, (4) metal�organic frameworks and (5) clay. From the review, it was found that simulation studies help us understand various parameters such as binding energy, Gibbs free energy, electrostatic field, ultrasound waves and binding ability for adsorption. Moreover, from the review of recent simulation studies, the effect of ultrasound waves and the electrostatic field was elucidated, which promoted the adsorption capacity. This review can assist in the screening of classified adsorbents for wastewater treatment using a fast and cheap approach while helping us understand the adsorption process from an atomistic perspective. © 2023 by the authors. date: 2023 type: Article type: PeerReviewed identifier: Hira, N.E. and Lock, S.S.M. and Shoparwe, N.F. and Lock, I.S.M. and Lim, L.G. and Yiin, C.L. and Chan, Y.H. and Hassam, M. (2023) Review of Adsorption Studies for Contaminant Removal from Wastewater Using Molecular Simulation. Sustainability (Switzerland), 15 (2). relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146698727&doi=10.3390%2fsu15021510&partnerID=40&md5=ed7e15b005f871ca944399b0d1c8fd1c relation: 10.3390/su15021510 identifier: 10.3390/su15021510