TY - JOUR Y1 - 2023/// VL - 22 UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148547730&doi=10.1016%2fj.mtsust.2023.100340&partnerID=40&md5=e90cb8f283dc3574264a02a9c12026b7 A1 - Sin, J.-C. A1 - Lam, S.-M. A1 - Zeng, H. A1 - Lin, H. A1 - Li, H. A1 - Huang, L. A1 - Liaw, S.-J. A1 - Mohamed, A.R. A1 - Lim, J.-W. JF - Materials Today Sustainability AV - none KW - Bacillus cereus; Bacteriology; Bromine compounds; Chromium compounds; Decomposition; Energy utilization; Escherichia coli; Europium; Photocatalytic activity; Wastewater treatment KW - reductions; 2 KW - 4-dichlorophenol degradation; Antimicrobial; Cr(VI) reduction; Dichlorophenols; Microflowers; Photo-activities; Photo-catalytic; Reactive species; Visible-light-driven KW - Bismuth compounds TI - Construction of visible light-driven Eu-doped BiOBr hierarchical microflowers for ameliorated photocatalytic 2,4-dichlorophenol and pathogens decomposition with synchronized hexavalent chromium reduction ID - scholars18531 N1 - cited By 17 N2 - The presence of diverse environmental contaminants has posed unprecedented challenges to wastewater treatment. Herein, Eu-doped BiOBr hierarchical microflowers (Eu-BiOBr) were fabricated via a surfactant-free hydrothermal route as highly efficient photocatalysts for multipurpose wastewater remediation applications. Under visible light irradiation, the Eu-BiOBr products demonstrated meritorious photoactivity when exposed to the mixture solution of 2,4-dichlorophenol (2,4-DCP) and Cr(VI). Noticeably, 97.6 of 2,4-DCP was degraded after 80 min, and a complete Cr(VI) reduction was obtained within 60 min over the optimized 2 at Eu-BiOBr. This was ascribed to Eu-doping efficiently accelerated charge separation and migration, thus proliferating more reactive species and enhancing photocatalytic performance. Moreover, the 2 at Eu-BiOBr possessed good photoactivity after four successive runs, which confirmed its recyclability. Further, as an evaluation of electrical energy consumption, the 2 at Eu-BiOBr was found to be more economical in decomposing both 2,4-DCP and Cr(VI). The reactive species scavenging tests validated that the hydroxyl radical played a major role for the photodegradation of 2,4-DCP whereas photogenerated electron served as predominant reactive species for Cr(VI) to be reduced to Cr(III). Additionally, the 2 at Eu-BiOBr demonstrated much enhanced bactericidal activities against Escherichia coli and Bacillus cereus compared to pristine BiOBr. These results revealed that the Eu-BiOBr can be employed as visible light-driven photocatalytic and antibacterial candidates for practical applications in environmental cleanup. © 2023 Elsevier Ltd ER -