@article{scholars18418, volume = {13}, title = {Effects of Jute Fiber on Fresh and Hardened Characteristics of Concrete with Environmental Assessment}, doi = {10.3390/buildings13071691}, year = {2023}, journal = {Buildings}, number = {7}, note = {cited By 12}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166194505&doi=10.3390\%2fbuildings13071691&partnerID=40&md5=38b5e9af3c5311fa0d197ccdcd530a0b}, author = {Khan, M. B. and Shafiq, N. and Waqar, A. and Radu, D. and Cisma{\`E}?, C. and Imran, M. and Almujibah, H. and Benjeddou, O.}, abstract = {Concrete is a widely utilized construction material globally; however, it is characterized by a fundamental deficiency in its tensile strength when it is not reinforced. The incorporation of diverse novel materials into concrete is being pursued with the aim of mitigating its limitations while concurrently enhancing its reliability and sustainability. Furthermore, it is noteworthy that concrete embodies a significant quantity of carbon. The primary cause of this phenomenon can be attributed to the utilization of cement as the principal binding component in concrete. Recent advancements in research have indicated that jute fiber, commonly referred to as JF, exhibits considerable potential as a novel material for enhancing the mechanical robustness of concrete. Although there is a significant body of literature on the application of jute fiber in concrete, there has been a dearth of research on the capacity of jute fiber (JF) to improve the mechanical strength of concrete and mitigate its carbon emissions. This study aims to cover a gap in the existing literature by analyzing and enhancing the application of JF in relation to its mechanical properties and environmental impact. The study involved conducting experiments wherein JF was added at varying weight percentages, specifically at 0, 0.10, 0.25, 0.50, and 0.75. The investigation encompassed a number of examinations of both the fresh and hardened states of concrete, in addition to assessments of its durability. The fresh concrete tests included the slump test, while the hardened concrete tests involved measuring compressive strength (CS), split tensile strength (STS), and flexural strength (FS). Additionally, the durability tests focused on water absorption (WA). The study involved the computation of embodied carbon (EC) ratios for various mix combinations. The findings suggest that incorporating JF into concrete results in a decrease in environmental impact relative to alternative fiber types, as demonstrated by a rise in eco-strength efficiency (ESE). Based on the findings of the conducted tests, an optimal proportion of 0.10 JF has been determined to be conducive to enhancing the CS, STS, and FS by 6.77, 6.91, and 9.63, respectively. The aforementioned deduction can be inferred from the results of the examinations. Using data obtained from extensive experimentation, the RSM (Response Surface Methodology) was used to construct a model. The model was optimized, resulting in the establishment of definitive equations that can be used to evaluate the effects of incorporating JF into concrete. Potential benefits have been identified for the advancement of concrete in the future through the utilization of JF. {\^A}{\copyright} 2023 by the authors.} }