relation: https://khub.utp.edu.my/scholars/18018/ title: Lignin derived nanoparticle intercalation on nitrogen-doped graphene quantum dots for electrochemical sensing of cardiac biomarker creator: Vasudevan, M. creator: Remesh, S. creator: Perumal, V. creator: Raja, P.B. creator: Ibrahim, M.N.M. creator: Gopinath, S.C.B. creator: Lee, H.-L. creator: Karuppanan, S. creator: Ovinis, M. creator: Arumugam, N. creator: Kumar, R.S. description: Lignin-scribed graphene (LSG) conjugated with nitrogen-doped graphene quantum dots (N-GQDs) and lignin-derived silver nanoparticles (Ag NPs) was developed through a hydrothermal process for the electrochemical sensing of Troponin I, a cardiac biomarker for Acute Myocardial Infarction (AMI). A nanocomposite with optimal conduction mechanism was developed by varying the N-GQDs doped amount intercalated on the surface of LSG. The nanocomposite was characterised by morphological, physical, and structural examinations. The Ag NPs and N-GQDs were found uniformly distributed on the LSG surface, with selective capture of the biotinylated aptamer probe on the bio-electrode indicative of the specific interaction with Troponin I, resulting in an increment in the charge transfer resistance following hybridisation analysis. The detection limit, as determined through impedance spectroscopy, was 1 fM or 30 fg/mL, with high levels of linearity, selectivity, repeatability, and stability of the sensor. This nanocomposite opens a new avenue for array-based medical diagnostics. © 2023 date: 2023 type: Article type: PeerReviewed identifier: Vasudevan, M. and Remesh, S. and Perumal, V. and Raja, P.B. and Ibrahim, M.N.M. and Gopinath, S.C.B. and Lee, H.-L. and Karuppanan, S. and Ovinis, M. and Arumugam, N. and Kumar, R.S. (2023) Lignin derived nanoparticle intercalation on nitrogen-doped graphene quantum dots for electrochemical sensing of cardiac biomarker. Microchemical Journal, 195. relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172194275&doi=10.1016%2fj.microc.2023.109405&partnerID=40&md5=ccc32a0f5b697b8ac27c9a8045f69d24 relation: 10.1016/j.microc.2023.109405 identifier: 10.1016/j.microc.2023.109405