TY - JOUR N1 - cited By 0 SP - 187 TI - Comparison of Fractal Dimension and Wavelet Transform Methods in Classification of Stress State from EEG Signals AV - none EP - 198 PB - University of Bahrain SN - 2210142X N2 - Stress is a significant issue in everyday life that affects both physical and mental health. There are different approaches to stress classification. This research examines the implementation of the fractal dimension (FD) method as one of the features for stress state classification using brain signals. Consequently, the comparison between FD and wavelet transform has been conducted using electroencephalogram (EEG) signals recorded during the Stroop Colour Word Test (SCWT). The comparison results show that the FD is better in the classification of the stress state. The highest F1 score has been obtained using FD with quadratic support vector machine (SVM) in average 83.03 for the comparison between baseline session and different stress states. Besides, FD with medium Gaussian SVM has the highest F1 score, on average 83.36, for comparison between various stress states. © 2022 University of Bahrain. All rights reserved. IS - 1 ID - scholars17771 A1 - Hamid, F.A. A1 - Saad, M.N.M. A1 - Haris, N. JF - International Journal of Computing and Digital Systems UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123520004&doi=10.12785%2fijcds%2f110115&partnerID=40&md5=bab1d041e96c5fc0c363aad7377d43e2 VL - 11 Y1 - 2022/// ER -