TY - BOOK UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137553296&doi=10.1016%2fB978-0-323-90789-7.00008-7&partnerID=40&md5=ac240fd2a5fc351e8e560de4dc2c7f1e A1 - Bingi, K. A1 - Prusty, B.R. A1 - Ibrahim, R. EP - 258 Y1 - 2022/// SN - 9780323907897; 9780323914413 PB - Elsevier N2 - This chapter focuses on the growth, development, and future of various machine learning techniques in industrial process control applications. However, the main focus is developing a neural network (NN)-based predictive controller to control the neutralization process using a continuous stirred tank reactor (CSTR). In the first stage of the proposed strategy, a nonlinear autoregressive moving average model will be developed to model the CSTR's nonlinearities, sensitive, and dynamic behavior. The training of the NN model is based on Levenberg-Marquardt algorithm. Then, for the developed model, a feedback linearization-based controller will be designed. The performance evaluation of the proposed modeling will be done on R2 and mean square errors. Moreover, the performance of the proposed control strategy will be evaluated and compared with the benchmark control law for set-point tracking. Furthermore, the numerical evaluation will be done using step-response characteristics such as rise, settling, and overshoot. © 2022 Elsevier Inc. All rights reserved. N1 - cited By 0 TI - Machine learning application to industrial control systems SP - 237 ID - scholars17547 AV - none ER -