relation: https://khub.utp.edu.my/scholars/16587/
title: Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller
creator: Dennis, J.O.
creator: Adam, A.A.
creator: Ali, M.K.M.
creator: Soleimani, H.
creator: Shukur, M.F.B.A.
creator: Ibnaouf, K.H.
creator: Aldaghri, O.
creator: Eisa, M.H.
creator: Ibrahem, M.A.
creator: Bashir Abdulkadir, A.
creator: Cyriac, V.
description: In this research, nanocomposite solid polymer electrolytes (NCSPEs) comprising methylcellulose/pectin (MC/PC) blend as host polymer, ammonium chloride (NH4Cl) as an ion source, and zinc oxide nanoparticles (ZnO NPs) as nanofillers were synthesized via a solution cast methodology. Techniques such as Fourier transform infrared (FTIR), electrical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were employed to characterize the electrolyte. FTIR confirmed that the polymers, NH4Cl salt, and ZnO nanofiller interact with one another appreciably. EIS demonstrated the feasibility of achieving a conductivity of 3.13 � 10�4 Scm�1 for the optimum electrolyte at room temperature. Using the dielectric formalism technique, the dielectric properties, energy modulus, and relaxation time of NH4Cl in MC/PC/NH4Cl and MC/PC/NH4Cl/ZnO systems were determined. The contribution of chain dynamics and ion mobility was acknowledged by the presence of a peak in the imaginary portion of the modulus study. The LSV measurement yielded 4.55 V for the comparatively highest conductivity NCSPE. © 2022 by the authors.
publisher: MDPI
date: 2022
type: Article
type: PeerReviewed
identifier:   Dennis, J.O. and Adam, A.A. and Ali, M.K.M. and Soleimani, H. and Shukur, M.F.B.A. and Ibnaouf, K.H. and Aldaghri, O. and Eisa, M.H. and Ibrahem, M.A. and Bashir Abdulkadir, A. and Cyriac, V.  (2022) Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller.  Membranes, 12 (7).   ISSN 20770375     
relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136132954&doi=10.3390%2fmembranes12070706&partnerID=40&md5=ce59096f8d39f3847e040a0abc9e6320
relation: 10.3390/membranes12070706
identifier: 10.3390/membranes12070706