relation: https://khub.utp.edu.my/scholars/16501/ title: Wettability of Nanostructured Transition-Metal Oxide (Al2O3, CeO2, and AlCeO3) Powder Surfaces creator: Alheshibri, M. creator: Albetran, H.M. creator: Abdelrahman, B.H. creator: Al-Yaseri, A. creator: Yekeen, N. creator: Low, I.M. description: Wettability has been the focal point of many studies in metal oxide materials due to their applications in water�gas shift reactions, organic reactions, thermochemical water splitting, and photocatalysis. This paper presents the results of systematic experimental studies on the wettability of surfaces of nanostructured transition-metal oxides (TMOs) (Al2O3, CeO2, and AlCeO3). The wettability of nanoparticles was investigated by measuring contact angles of different concentrations of water-based nanofluids (0.05�0.1 wt) on the glass slide. The morphology, the heterostructure, and the nature of incorporated nanoparticles were confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Characteristic diffraction patterns of the nanomaterials were evaluated using energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The contact angles of water�Al2O3, water�CeO2, and water�AlCeO3 were measured as 77.5 ± 5°, 89.8 ± 4°, and 69.2 ± 1°, respectively. This study suggests that AlCeO3 is strongly water-wet (hydrophilic), while CeO2 is weakly water-wet (hydrophobic). It further demonstrated that the sizes and compositions of the nanoparticles are key parameters that influence their wetting behaviors. © 2022 by the authors. publisher: MDPI date: 2022 type: Article type: PeerReviewed identifier: Alheshibri, M. and Albetran, H.M. and Abdelrahman, B.H. and Al-Yaseri, A. and Yekeen, N. and Low, I.M. (2022) Wettability of Nanostructured Transition-Metal Oxide (Al2O3, CeO2, and AlCeO3) Powder Surfaces. Materials, 15 (16). ISSN 19961944 relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137680198&doi=10.3390%2fma15165485&partnerID=40&md5=baac19ccee5195a94de6c0ca68776ccf relation: 10.3390/ma15165485 identifier: 10.3390/ma15165485