TY - JOUR SP - 1851 TI - State-of-the-Art: Assessing Semantic Similarity in Automated Short-Answer Grading Systems N1 - cited By 2 AV - none EP - 1858 PB - Natural Sciences Publishing SN - 20909551 ID - scholars16376 N2 - The use of semantic in Natural Language Processing (NLP) has sparked the interest of academics and businesses in various fields. One such field is Automated Short-answer Grading Systems (ASAGS) for automatically evaluating responses for similarity with the expected answer. ASAGS poses semantic challenges because the responses of a topic are in the responderâ??s own words. This study is providing an in-depth analysis of work to improve the assessment of semantic similarity between corpora in natural language in the context of ASAGS. Three popular semantic approaches are corpus-based, knowledge-based, and deep learning are used to evaluate against the conventional methods in ASAGS. Finally, the gaps in knowledge are identified and new research areas are proposed. © 2022 NSP. IS - 5 VL - 11 JF - Information Sciences Letters A1 - Amur, Z.H. A1 - Hooi, Y.K. UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139493366&doi=10.18576%2fisl%2f110540&partnerID=40&md5=06706c0295d8aea49907a94093c2581c Y1 - 2022/// ER -