TY - JOUR Y1 - 2022/// UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140796217&doi=10.1016%2fj.egyr.2022.10.257&partnerID=40&md5=45b6ecbc663b7e8579ef0f6f1ab110b6 A1 - Alanazi, A. A1 - Ali, M. A1 - Bawazeer, S. A1 - Yekeen, N. A1 - Hoteit, H. N1 - cited By 13 JF - Energy Reports VL - 8 N2 - Hydrogen (H2) is a clean fuel and key enabler of energy transition into green renewable sources and a method of achieving net-zero emissions by 2050. Underground H2 storage (UHS) is a prominent method offering a permanent solution for a low-carbon economy to meet the global energy demand. However, UHS is a complex procedure where containment security, pore-scale scattering, and large-scale storage capacity can be influenced by H2 contamination due to mixing with cushion gases and reservoir fluids. The literature lacks comprehensive investigations of existing thermodynamic models in calculating the accurate transport properties of H2-blend mixtures essential to the efficient design of various H2 storage processes. This work benchmarks cubic equations of state (EoSs), namely Pengâ??Robinson (PR) and Soave Redlichâ??Kwong (SRK) and their modifications by Bostonâ??Mathias (PR-BM) and Schwartzentruberâ??Renon (SR-RK), for their reliability in predicting the thermophysical properties of binary and ternary H2-blend mixtures, including CH4, C2H6, C3H8, H2S, H2O, CO2, CO, and N2, in addition to Helmholtz-energy-based EoSs (i.e., PC-SAFT and GERG2008). The benchmarked models are regressed against the experimental data for vaporâ??liquid equilibrium (VLE) that covers a wide range of pressures (0.01 to 101 MPa), temperatures (92 K to 367 K), and mole fractions (0.001 to 0.90) of H2. The novelty of this work is in benchmarking and optimizing the parameters of the mentioned EoSs to study VLE envelopes, densities, and other critical transport properties, such as heat capacity and the Jouleâ??Thomson coefficient of H2 mixtures in a wide range of associated conditions. The results highlight the significant effect of the temperature-dependent binary interaction parameters on the calculations of thermophysical properties. The SR-RK EoS demonstrated the highest agreement with VLE data among the cubic EoSs with a low root mean square error and absolute average deviation. The PC-SAFT VLE models demonstrated results comparable to the SR-RK. The sensitivity analysis highlighted the high influence of impurity on changing the thermophysical behavior of H2-blend streams during the H2 storage process. © 2022 The Authors SN - 23524847 KW - Binary mixtures; Digital storage; Hydrogen fuels; Hydrogen storage; Renewable energy resources; Specific heat; Statistical mechanics; Transport properties KW - Blend mixtures; Equation of state; Equation-of-state; Hydrogen geo-storage; Hydrogen impurity; Hydrogen mixture; PC-SAFT; Phase equilibriums; Thermophysical behavior; Vapor + liquid equilibria KW - Mean square error TI - Evaluation of cubic, PC-SAFT, and GERG2008 equations of state for accurate calculations of thermophysical properties of hydrogen-blend mixtures ID - scholars16237 EP - 13899 SP - 13876 PB - Elsevier Ltd AV - none ER -