eprintid: 15648 rev_number: 2 eprint_status: archive userid: 1 dir: disk0/00/01/56/48 datestamp: 2023-11-10 03:30:16 lastmod: 2023-11-10 03:30:16 status_changed: 2023-11-10 02:00:00 type: article metadata_visibility: show creators_name: Nizamani, Z. creators_name: Na, L.L. creators_name: Nakayama, A. creators_name: Ali, M.O.A. creators_name: Nizamani, M.A. title: Renewable wave energy potential for the sustainable offshore oil platforms in South China Sea ispublished: pub keywords: Drilling platforms; Electric power generation; Gas emissions; Location; Natural gas; Offshore oil well production; Wave power, Jacket platforms; Metocean; Pelamis; Renewable energies; Renewable wave energies; South China sea; Time-periods; Wave energy; Wave energy converters; Wave farms, Wave energy conversion note: cited By 2 abstract: The Jacket platform needs gas and diesel to run its turbines, and in the end, they produce catastrophic emissions annually. The environmental concerns regarding these platforms have forced us to utilize an alternative source of energy that is sustainable and clean. In this study 51 locations, are of interest where oil and gas activities are in progress at present in the shape of a jacket platform or pipelines. The significant wave height and wave period scatter diagram data are collected from the platforms in the South China Sea. The linear wave theory is used to find the wave power. The given time period is converted into an equivalent time period first before wave energy is determined. The study shows that location no. 20 is the ideal location to deploy the wave energy converter Pelamis P2 with a potential mean wave power of 6.61 kW/m A single unit of Pelamis P2 can produce on an average electricity output of 91.37 kW/m including, the losses and machine efficiencies, whereas a wave farm can generate an average output of 62 GWh/yr. The electricity supply of 70.3 of the minimum and 14.1 of the maximum energy demand, while using only wave energy converter. If hybrid wind and wave energy system is used, then energy production will increase. The results show that the wave farm could also reduce the use of natural gas up to 17.6E06 m3/year, avoiding the emission of 12000 tonnes of CO and 54000 tonnes of NOx annually, and can save up to RM 20 billion annually with the reduction of natural gas emissions. © This work is licensed under a Creative Commons Attribution 4.0 License. date: 2021 publisher: Institute of Electrical and Electronics Engineers Inc. official_url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117137878&doi=10.1109%2fACCESS.2021.3104729&partnerID=40&md5=d6e6477b2a38c140c3f416ea46b2f459 id_number: 10.1109/ACCESS.2021.3104729 full_text_status: none publication: IEEE Access volume: 9 pagerange: 116973-116993 refereed: TRUE issn: 21693536 citation: Nizamani, Z. and Na, L.L. and Nakayama, A. and Ali, M.O.A. and Nizamani, M.A. (2021) Renewable wave energy potential for the sustainable offshore oil platforms in South China Sea. IEEE Access, 9. pp. 116973-116993. ISSN 21693536