TY - JOUR UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103076522&doi=10.3390%2fsu13063069&partnerID=40&md5=e897110c2a8d134b16de8bd6e6ffa0ca JF - Sustainability (Switzerland) A1 - Saeed, A.A.H. A1 - Harun, N.Y. A1 - Bilad, M.R. A1 - Afzal, M.T. A1 - Parvez, A.M. A1 - Roslan, F.A.S. A1 - Rahim, S.A. A1 - Vinayagam, V.D. A1 - Afolabi, H.K. VL - 13 Y1 - 2021/// SN - 20711050 PB - MDPI AG N2 - An agricultural waste-based source of energy in the form of briquettes from rice husk has emerged as an alternative energy source. However, rice husk-based briquette has a low bulk density and moisture content, resulting in low durability. This study investigated the effect of initial moisture contents of 12, 14, and 16 of rice husk-based briquettes blended with 10 wt of kraft lignin on their chemical and physical characteristics. The briquetting was done using a hand push manual die compressor. The briquette properties were evaluated by performing chemical (ultimate and proximate analysis, thermogravimetric analysis), physical (density, durability, compressive strength, and surface morphology) analyses. The durability values of all briquette samples were above 95, meeting the standard with good compressive strength, surface morphology, and acceptable density range. The briquette made from the blend with 14 moisture content showed the highest calorific value of 17.688 MJ kgâ??1, thanks to its desirable morphology and good porosity range, which facilitates the transport of air for combustion. Overall, this study proved the approach of enhancing the quality of briquettes from rice husk by controlling the moisture content. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. N1 - cited By 25 IS - 6 KW - alternative energy; crop residue; durability; moisture content; physicochemical property; waste technology TI - Moisture content impact on properties of briquette produced from rice husk waste ID - scholars15112 AV - none ER -