eprintid: 13535 rev_number: 2 eprint_status: archive userid: 1 dir: disk0/00/01/35/35 datestamp: 2023-11-10 03:28:05 lastmod: 2023-11-10 03:28:05 status_changed: 2023-11-10 01:51:25 type: article metadata_visibility: show creators_name: Zulkifli, N.N. creators_name: Mahmood, S.M. creators_name: Akbari, S. creators_name: Manap, A.A.A. creators_name: Kechut, N.I. creators_name: Elrais, K.A. title: Evaluation of new surfactants for enhanced oil recovery applications in high-temperature reservoirs ispublished: pub keywords: Adsorption; Anionic surfactants; Blending; Carboxylation; Hardness; High temperature applications; Microemulsions; Petroleum reservoir evaluation; Seawater effects; Sulfur compounds; Temperature, Chemical enhanced oil recoveries; Enhanced oil recovery; High salinity; High temperature; High temperature field; High temperature reservoirs; Surfactant adsorption; Surfactant concentrations, Enhanced recovery note: cited By 53 abstract: Surfactants have been successfully used for enhanced or improved oil recovery in reservoirs having mild conditions (low temperature, low salinity). Reservoirs having harsh conditions, however, offer unique challenges in that most surfactants precipitate and chemically degrade due to a combined effect of high temperature and hardness salinity. Industry�s efforts are continuing to develop or formulate surfactants for oil recovery applications to high temperature and salinity. The aim of this study was to evaluate several modified anionic surfactants/formulations that were claimed to be able to overcome the unfavorably high-salinity brine (sea water) and high temperature and to understand the impact of high temperature to surfactant adsorption. A series of experiments were conducted to characterize and quantify the effects of aging time in high temperature (106 °C) and seawater salinity (32,000 ppm with 1600 hardness) on surfactant performance. Results for both sulfate- and sulfonate-based surfactants were deemed not to be satisfactory. Sulfate-based surfactants encountered hydrolysis problem at high temperature, whereas sulfonate-based surfactants precipitated in the presence of divalent ions. This study then focused on alkyl ether carboxylate (AEC) as the main surfactant, and blends of AEC with alkyl polyglucoside (APG). To find the optimum conditions, phase behavior tests were performed with a fixed seawater salinity but with different blending ratios of surfactant and co-surfactant, as well as overall surfactant concentrations, similar to the salinity scan. Type III microemulsion was observed for both surfactant solutions of AEC and AEC�APG blend with IFT of 10�3 mN/m (millinewton/meter). Surfactant adsorption resulted in lower adsorption in the high-temperature region. The results of this project are urgently needed by the industry for future screening in order to find suitable surfactants for applying to reservoirs with harsh conditions. The study also intends to provide an understanding of adsorption relationship to high temperature, as a guideline in addressing surfactant losses due to adsorption at high-temperature field application. © 2019, The Author(s). date: 2020 publisher: Springer official_url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068219243&doi=10.1007%2fs13202-019-0713-y&partnerID=40&md5=024f4ad67c203d58bef16a1845bc7126 id_number: 10.1007/s13202-019-0713-y full_text_status: none publication: Journal of Petroleum Exploration and Production Technology volume: 10 number: 2 pagerange: 283-296 refereed: TRUE issn: 21900558 citation: Zulkifli, N.N. and Mahmood, S.M. and Akbari, S. and Manap, A.A.A. and Kechut, N.I. and Elrais, K.A. (2020) Evaluation of new surfactants for enhanced oil recovery applications in high-temperature reservoirs. Journal of Petroleum Exploration and Production Technology, 10 (2). pp. 283-296. ISSN 21900558