TY - JOUR Y1 - 2020/// IS - 4 TI - Choline-based ionic liquids-incorporated IRMOF-1 for H2S/CH4 capture: Insight from molecular dynamics simulation N2 - The removal of H2S and CH4 from natural gas is crucial as H2S causes environmental contamination, corrodes the gas stream pipelines, and decreases the feedstock for industrial productions. Many scientific researches have shown that the metal-organic framework (MOF)/ionic liquids (ILs) have great potential as alternative adsorbents to capture H2S. In this work, molecular dynamics (MD) simulation was carried out to determine the stability of ILs/IRMOF-1 as well as to study the solubility of H2S and CH4 gases in this ILs/IRMOF-1 hybrid material. Three choline-based ILs were incorporated into IRMOF-1 with different ratios of 0.4, 0.8, and 1.2 w/w, respectively, in which the most stable choline-based ILs/IRMOF-1 composite was analysed for H2S/CH4 solubility selectivity. Among the three choline-based ILs/IRMOF-1, Chl SCN/IRMOF-1 shows the most stable incorporation. However, the increment of ILs loaded in the IRMOF-1 significantly reduced the stability of the hybrid due to the crowding effect. Solvation free energy was then computed to determine the solubility of H2S and CH4 in the Chl SCN/IRMOF-1. H2S showed higher solubility compared to CH4, where its solubility declined with the increase of choline-based IL loading. © 2020 by the authors. SN - 22279717 A1 - Iman Ishak, M.A. A1 - Taha, M.F. A1 - Hakim Wirzal, M.D. A1 - Nordin, M.N. A1 - Abdurrahman, M. A1 - Jumbri, K. UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086735682&doi=10.3390%2fPR8040412&partnerID=40&md5=8a825f1d2ab11621a6dfa075482f5295 N1 - cited By 10 ID - scholars13264 AV - none JF - Processes PB - MDPI AG VL - 8 ER -