relation: https://khub.utp.edu.my/scholars/12925/ title: Extension of BET theory to CO2 adsorption isotherms for ultra-microporosity of covalent organic polymers creator: Mukhtar, A. creator: Mellon, N. creator: Saqib, S. creator: Lee, S.-P. creator: Bustam, M.A. description: Usually, nitrogen and argon adsorption�desorption isotherms are used at their respective boiling points for the determination of specific surface area via the BET theory of microporous materials. However, for ultra-micropores, where nitrogen and argon cannot access at cryogenic temperatures, the CO2 adsorption�desorption isotherms have been considered as alternative options for the determination of specific surface area by extending BET theory, but the surface area determined by using CO2 adsorption�desorption isotherms is not significant due to strong CO2-CO2 interactions. In this study, the microporous covalent organic polymers are subjected to nitrogen and CO2 adsorption�desorption isotherms and the results showed that a clear linear region is available in isotherms, which confirms the presence of ultra-micropores. The surface area determined by the CO2 adsorption�desorption isotherms is higher than the surface area determined by N2 adsorption�desorption isotherms. These results indicate that the microporous covalent organic polymers contain ultra-micropores where only CO2 can reach, while nitrogen and argon cannot access at cryogenic conditions because their kinetic diameter is larger than CO2. © 2020, Springer Nature Switzerland AG. publisher: Springer Nature date: 2020 type: Article type: PeerReviewed identifier: Mukhtar, A. and Mellon, N. and Saqib, S. and Lee, S.-P. and Bustam, M.A. (2020) Extension of BET theory to CO2 adsorption isotherms for ultra-microporosity of covalent organic polymers. SN Applied Sciences, 2 (7). ISSN 25233971 relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096140500&doi=10.1007%2fs42452-020-2968-9&partnerID=40&md5=f808294fa5ef668716429abfa6b9a5cc relation: 10.1007/s42452-020-2968-9 identifier: 10.1007/s42452-020-2968-9