relation: https://khub.utp.edu.my/scholars/12764/ title: Sentiment analysis techniques to analyze hse situational awareness at oil and gas platforms using machine learning creator: Dafaallah, D.E. creator: Hashim, A.S. description: Health Safety & Environment (HSE) situational awareness is a very important aspect of any risky workplace. Negligence in complying with HSE policies and practices might lead to unwanted incidents, critical injuries, death, spread of diseases and environmental pollution. In most corporations, information on HSE related incidents is disseminated through formal channels such as reports. Employees on the other hand frequently use social media to share, complain and discuss HSE-related issues. The issues are discussed through an informal platform, it is difficult to analyze opinions for further action. Therefore, this study will investigate existing sentiment analysis models and formulate a suitable sentiment analysis model using machine learning technique. Through literature review, Naïve Bayes model was found to be the most efficient text classification in sentiment analysis. This technique still needs further enhancement as the accuracy is not within requirement. Upon enhancing the Naïve Bayes model, a better outcome can be attained. © 2020, Engg Journals Publications. All rights reserved. publisher: Engg Journals Publications date: 2020 type: Article type: PeerReviewed identifier: Dafaallah, D.E. and Hashim, A.S. (2020) Sentiment analysis techniques to analyze hse situational awareness at oil and gas platforms using machine learning. Indian Journal of Computer Science and Engineering, 11 (5). pp. 640-645. ISSN 09765166 relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094810514&doi=10.21817%2findjcse%2f2020%2fv11i5%2f201105244&partnerID=40&md5=dbe17cbecf5075c11527d6f8838e0344 relation: 10.21817/indjcse/2020/v11i5/201105244 identifier: 10.21817/indjcse/2020/v11i5/201105244