eprintid: 11830 rev_number: 2 eprint_status: archive userid: 1 dir: disk0/00/01/18/30 datestamp: 2023-11-10 03:26:22 lastmod: 2023-11-10 03:26:22 status_changed: 2023-11-10 01:16:15 type: conference_item metadata_visibility: show creators_name: Latif, W.M.S.M. creators_name: Sharbini, S.N. creators_name: Wan Sulaiman, W.R. creators_name: Idris, A.K. title: Utilization of silicon dioxide nanoparticles in foam enhanced oil recovery - A comprehensive review ispublished: pub keywords: Enhanced recovery; Nanometals; Nanoparticles; Oil well flooding; Particle size; Phase interfaces; Silica; Silicon oxides; SiO2 nanoparticles; Surface active agents; Surface treatment, Adsorption energies; Enhanced oil recovery; Gas-liquid interface; Particle arrangements; Particle concentrations; Rock properties; Surfactant adsorption; Surfactant foams, Silica nanoparticles note: cited By 5; Conference of 1st International Postgraduate Conference on Mechanical Engineering, IPCME 2018 ; Conference Date: 31 October 2018 Through 31 October 2018; Conference Code:144222 abstract: In recent years, the development of nanotechnology has paved the way of using nanoparticles as foam stabilizer. The applications of silicon dioxide (SiO 2 ) nanoparticles in improving foam stability received great attention among researchers over the past decade, either synergistic SiO 2 nanoparticles-surfactant foam or nanoparticles-gas supercritical foam. In fact, the significant difference between nanoparticles and surfactant as foam stabilizer is the adsorption energy of nanoparticles at gas-liquid interfaces, which are hundred or thousand times bigger than surfactant adsorption energy. Besides, the effectiveness of nanoparticles as foam stabilizer also influenced by the maximum capillary pressure, particle arrangement during film drainage, and the presence of aggregate and cork formation inside lamellae. Variety parameters of nanoparticles-fluid-rock properties have been studied in order to optimize foam flooding efficiency-e.g., type of nanoparticles, particle concentration, particle size, surface modification, salinity, permeability, wettability etc. However, to date, no attempt has been made to comprehensively review these existing literatures. Thus, to fill this identified gap, the results of previous studies are discussed, challenged and direction for further studies are suggested in this paper. © Published under licence by IOP Publishing Ltd. date: 2019 publisher: Institute of Physics Publishing official_url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061007141&doi=10.1088%2f1757-899X%2f469%2f1%2f012027&partnerID=40&md5=ba2d3609d626dec4b11fbf365264a5c9 id_number: 10.1088/1757-899X/469/1/012027 full_text_status: none publication: IOP Conference Series: Materials Science and Engineering volume: 469 number: 1 refereed: TRUE issn: 17578981 citation: Latif, W.M.S.M. and Sharbini, S.N. and Wan Sulaiman, W.R. and Idris, A.K. (2019) Utilization of silicon dioxide nanoparticles in foam enhanced oil recovery - A comprehensive review. In: UNSPECIFIED.