relation: https://khub.utp.edu.my/scholars/10819/ title: Continuous path planning of Kinematically redundant manipulator using Particle Swarm Optimization creator: Machmudah, A. creator: Parman, S. creator: Baharom, M.B. description: This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO. © 2015 The Science and Information (SAI) Organization Limited. publisher: Science and Information Organization date: 2018 type: Article type: PeerReviewed identifier: Machmudah, A. and Parman, S. and Baharom, M.B. (2018) Continuous path planning of Kinematically redundant manipulator using Particle Swarm Optimization. International Journal of Advanced Computer Science and Applications, 9 (3). pp. 207-217. ISSN 2158107X relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049533943&doi=10.14569%2fIJACSA.2018.090330&partnerID=40&md5=56aad429c10c816f9dff228a5feca322 relation: 10.14569/IJACSA.2018.090330 identifier: 10.14569/IJACSA.2018.090330