TY - JOUR VL - 15 JF - International Journal of Automotive and Mechanical Engineering A1 - Murugiah, P.S. A1 - Oh, P.C. A1 - Lau, K.K. UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048329506&doi=10.15282%2fijame.15.1.2018.14.0393&partnerID=40&md5=886e0d0e10105778ccd0eb09d84e3bb4 Y1 - 2018/// ID - scholars10463 KW - Carbon dioxide; Carbon nanofibers; Filled polymers; Gas permeability; Glass transition; Separation; Thermodynamic stability KW - 6-dimethyl-1 KW - 4-pheneylene oxide); CO2 separation; Dry phase inversion; Gas separations; Membrane fabrication; Mixed matrix membranes; Poly (2; Polymer chains KW - Gas permeable membranes N2 - Mixed Matrix Membrane (MMM) is one of the most promising candidate among the available gas separation application for CO2/CH4 separation in natural gas industries. However, the fabrication of a defect-free MMM remains a challenge. For this work, a novel MMM was developed by incorporating carbon nanofibers (CNF) at different weight loadings into poly (2, 6-dimethyl-1, 4-pheneylene oxide) (PPOdm) polymer matrix via dry-phase inversion technique. CNF was purified with hydrogen peroxide prior to membrane fabrication. Approximately 178 increment in the CO2 permeability were attained at 3 wt of CNF loading whereas the CO2/CH4 selectivity were increased by 53 compared to pristine PPOdm polymeric membrane. The smooth wall of CNF coupled with its larger pore diameter acted as a pathway and renders high gas permeability values. PPOdm - 3 wt CNF MMM exhibits improved morphology with no significant filler agglomeration on the polymer matrix. The TGA and DSC analysis showed that at 3 wt of CNF loading, the thermal stability of the polymer chains was enhanced in which higher decomposition (Td = 425 °C) and glass transition (Tg =210 °C) temperatures were reported. © Universiti Malaysia Pahang, Malaysia. IS - 1 EP - 5096 PB - Universiti Malaysia Pahang SN - 22298649 TI - The performance of PPOdm-CNF Mixed Matrix Membrane for CO2/CH4 separation SP - 5086 N1 - cited By 2 AV - none ER -