%0 Journal Article %@ 09259635 %A Bashiri, R. %A Mohamed, N.M. %A Suhaimi, N.A. %A Shahid, M.U. %A Kait, C.F. %A Sufian, S. %A Khatani, M. %A Mumtaz, A. %D 2018 %F scholars:10342 %I Elsevier Ltd %J Diamond and Related Materials %K Cost effectiveness; Electrochemistry; Field emission microscopes; Fourier transform infrared spectroscopy; Heterojunctions; Hydrogen production; Nanorods; Photocatalysts; Photoelectrochemical cells; Scanning electron microscopy; Solar power generation; Strontium compounds; Titanium dioxide; X ray diffraction, Chemical bath deposition technique; Environmentally friendly process; Field emission scanning electron microscopy; g-C3N4; Photocatalytic hydrogen production; Photoelectrochemical water splitting; Solar Hydrogen Production; TiO2/SrTiO3, High resolution transmission electron microscopy %P 5-12 %R 10.1016/j.diamond.2018.03.019 %T Photoelectrochemical water splitting with tailored TiO2/SrTiO3@g-C3N4 heterostructure nanorod in photoelectrochemical cell %U https://khub.utp.edu.my/scholars/10342/ %V 85 %X Solar hydrogen production through water photosplitting in photoelectrochemical (PEC) cell is one of the most desirable, cost-effective and environmentally friendly processes. However, it is still suffering from the low photoconversion efficiency. A novel tailored TiO2/SrTiO3@g-C3N4 heterostructure nanorod was synthesized to investigate the photocatalytic hydrogen production under visible light condition in glycerol-based PEC cell. A series of TiO2 and TiO2/SrTiO3 nanorod were grown on F-doped SnO2 glass (FTO) substrate by hydrothermal method and then were modified using graphitic carbon nitride g-C3N4 via the chemical bath deposition technique. The samples were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance UV�Vis spectroscopy (DR-UV�Vis), and Fourier transform infrared (FTIR) to explore the physicochemical properties of the prepared photocatalysts. The prepared TiO2/SrTiO3@g-C3N4 served as the efficient photoanode with maximum produced hydrogen of 73 μmol/cm2 compared to others. This photocatalyst had more uniformed structures and shifted more absorbance to the visible region as presented in FESEM and DR-UV�Vis. Therefore, high performance of this photocatalyst can be ascribed to the close interfacial connections between g-C3N4 and TiO2/SrTiO3 where the photo-generated electron and holes were effectively separated. © 2018 Elsevier B.V. %Z cited By 36