Integrated Consequence Modelling for Fire Radiation and Combustion Product Toxicity in offshore Petroleum Platform using Risk Based Approach

Niazi, U.M. and Nasif, M.S. and Muhammad, M.B. and Imran, M. (2018) Integrated Consequence Modelling for Fire Radiation and Combustion Product Toxicity in offshore Petroleum Platform using Risk Based Approach. In: UNSPECIFIED.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

The processing area of offshore platform has high probability of leakage of hydrocarbons. Liquefied Natural Gas (LNG) is one of the most common hydrocarbon produced in offshore platforms. Leakage of LNG can cause pool fire, jet fire, flash fire or fire ball. Thermal radiations due to fire is the major source of damage to workers on board. But due to fire, various combustion product toxic gases are also produced that have both acute and chronic health effects. These toxic gases can cause incapacitation, increased heart rate, vomiting and even death. Predicting the human injury due to thermal radiations and concentration of toxic gases are the key issues. A risk based approach takes in to consideration the duration a worker spent on different location of offshore platform and also it has the additive ability to evaluate overall risk due to fire radiation and toxic gases. Grid based approach helps in better visualization of risk posed by fire radiation and combustion product toxic gases at different locations of platform. The current study proposed an integrated consequence modelling approach for fire and combustion product toxic gases using risk based and grid based approaches. The integrated accident is modelled using Computational Fluid Dynamics (CFD) code Fire Dynamics Simulator (FDS). The results showed that risk posed by thermal radiation is confined on sub cellar deck (lower deck) but estimated risk due to combustion product gas (carbon monoxide) on cellar deck (upper deck) has significant value that needs to be considered. The current approach would be useful for emergency preparedness plans and safety measures designs for offshore platforms. © 2018 The Authors, published by EDP Sciences.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Additional Information: cited By 4; Conference of 2018 UTP-UMP-VIT Symposium on Energy Systems, SES 2018 ; Conference Date: 18 September 2018 Through 19 September 2018; Conference Code:141921
Uncontrolled Keywords: Carbon monoxide; Civil defense; Combustion; Computational fluid dynamics; Drilling platforms; Fire protection; Fires; Fuel tanks; Gases; Heat radiation; Hydrocarbon refining; Hydrocarbons; Liquefied natural gas; Offshore oil fields; Offshore oil well production; Radiation; Risk perception, Combustion products; Computational Fluid Dynamics codes; Emergency preparedness plans; Fire dynamics simulator; Grid-based approach; Liquefied Natural Gas (LNG); Off shore platforms; Risk based approaches, Risk assessment
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 09 Nov 2023 16:36
Last Modified: 09 Nov 2023 16:36
URI: https://khub.utp.edu.my/scholars/id/eprint/9765

Actions (login required)

View Item
View Item