Optimization of electrical discharge machining parameters of SiSiC through response surface methodology

Aliyu, A.A.A. and Rohani, J.M. and Rani, A.M.A. and Musa, H. (2017) Optimization of electrical discharge machining parameters of SiSiC through response surface methodology. Jurnal Teknologi, 79 (1). pp. 119-129. ISSN 01279696

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

In recent years, researchers have demonstrated increases interest in studies involving silicon carbide (SiC) materials due to several industrial applications. Extreme hardness and high brittleness properties of SiC make the machining of such material very difficult, time consuming and costly. Electrical discharge machining (EDM) has been regarded as the most viable method for the machining of SiC. The mechanism of EDM process is complex. Researchers have acknowledged a challenge in generating a model that accurately describes the correlation between the input parameters and the responses. This paper reports the study on parametric optimization of siliconized silicon carbide (SiSiC) for the following quality responses; material removal rate (MRR), tool wear ratio (TWR) and surface roughness (Ra). The experiments were planned using Face centered central composite design. The models which related MRR, TWR and Ra with the most significant factors such as discharge current (Ip), pulse-on time (Ton), and servo voltage (Sv) were developed. In order to develop, improve and optimize the models response surface methodology (RSM) was used. Non-linear models were proposed for MRR and Ra while linear model was proposed for TWR. The margin of error between predicted and experimental values of MRR, TWR and Ra are found within 6.7, 5.6 and 2.5 respectively. Thus, the excellent reproducibility of this experimental study is confirmed, and the models developed for MRR, TWR and Ra are justified to be valid by the confirmation tests. © 2017 Penerbit UTM Press. All rights reserved.

Item Type: Article
Additional Information: cited By 13
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 09 Nov 2023 16:21
Last Modified: 09 Nov 2023 16:21
URI: https://khub.utp.edu.my/scholars/id/eprint/9397

Actions (login required)

View Item
View Item