Hassan, M.A. and Pardiansyah, I. and Malik, A.S. and Faye, I. and Rasheed, W. (2017) Enhanced people counting system based head-shoulder detection in dense crowd scenario. In: UNSPECIFIED.
Full text not available from this repository.Abstract
Counting precisely the number of people in a crowd is one of the most attractive issues for video analytics application. In this paper, an integrated method using Histogram of Oriented Gradient (HOG) and Completed Local Binary Pattern (CLBP) is proposed to detect a head-shoulder region of people within image or video sequence. Head-shoulder region is used as features to detect people against the false positive and false negative issue. HOG and CLBP are used to extract the edge contour and texture features of head-shoulder region, respectively. The two features are fused together to generate a combined feature vector. Support Vector Machine (SVM) is used to execute classification of the fusion features to classify people from a mixture of objects. The results show that the detection rate of the proposed method HOG-CLBP, on Recall value and Accuracy, achieves better performance compared to the current method for dense crowd scenario. © 2016 IEEE.
Item Type: | Conference or Workshop Item (UNSPECIFIED) |
---|---|
Additional Information: | cited By 8; Conference of 6th International Conference on Intelligent and Advanced Systems, ICIAS 2016 ; Conference Date: 15 August 2016 Through 17 August 2016; Conference Code:125970 |
Uncontrolled Keywords: | Graphic methods; Image retrieval; Image segmentation; Support vector machines, Crowd density; Histogram of oriented gradients; Local binary patterns; People counting; Video surveillance, Security systems |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 09 Nov 2023 16:20 |
Last Modified: | 09 Nov 2023 16:20 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/8980 |