Prediction of CO2 gas permeability behavior of ionic liquid�polymer membranes (ILPM)

Mannan, H.A. and Mukhtar, H. and Murugesan, T. and Man, Z. and Bustam, M.A. and Shaharun, M.S. and Abu Bakar, M.Z. (2017) Prediction of CO2 gas permeability behavior of ionic liquid�polymer membranes (ILPM). Journal of Applied Polymer Science, 134 (17). ISSN 00218995

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Predicting the gas permeability of ionic liquid-polymeric membranes (ILPM) is of great importance for the design of efficient gas separation membrane materials. The available models for the prediction of CO2 gas permeability through ionic liquid-polymeric membranes were analyzed using the literature data. Maxwell model was selected for modification due to relatively accurate prediction capability. The Maxwell model was modified for ionic liquid-polymeric membranes by incorporating model parameter k for the effectiveness of volume fraction of dispersed phase. The established methodology was tested for different ionic liquid-polymeric membrane systems for validation. A satisfactory agreement was observed for predicted and experimental permeability by using the current approach. This method can be used for the prediction of CO2 gas permeability through ionic liquid-polymeric membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44761. © 2017 Wiley Periodicals, Inc.

Item Type: Article
Additional Information: cited By 12
Uncontrolled Keywords: Carbon dioxide; Forecasting; Gas permeability; Gases; Ionic liquids; Liquids; Mechanical permeability; Membranes; Models; Polymeric membranes; Polymers, Accurate prediction; Dispersed phase; Gas separation membrane; Liquid polymers; Literature data; Maxwell models; Model parameters, Gas permeable membranes
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 09 Nov 2023 16:20
Last Modified: 09 Nov 2023 16:20
URI: https://khub.utp.edu.my/scholars/id/eprint/8670

Actions (login required)

View Item
View Item