Javaid, M.Y. and Ovinis, M. and Hashim, F.B.M. and Maimun, A. and Ahmed, Y.M. and Ullah, B. (2017) Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider. International Journal of Naval Architecture and Ocean Engineering, 9 (4). pp. 382-389. ISSN 20926782
Full text not available from this repository.Abstract
We are developing a prototype underwater glider for subsea payload delivery. The idea is to use a glider to deliver payloads for subsea installations. In this type of application, the hydrodynamic forces and dynamic stability of the glider is of particular importance, as it has implications on the glider's endurance and operation. In this work, the effect of two different wing forms, rectangular and tapered, on the hydrodynamic characteristics and dynamic stability of the glider were investigated, to determine the optimal wing form. To determine the hydrodynamic characteristics, tow tank resistance tests were carried out using a model fitted alternately with a rectangular wing and tapered wing. Steady-state CFD analysis was conducted using the hydrodynamic coefficients obtained from the tests, to obtain the lift, drag and hydrodynamic derivatives at different angular velocities. The results show that the rectangular wing provides larger lift forces but with a reduced stability envelope. Conversely, the tapered wing exhibits lower lift force but improved dynamic stability. © 2016 Society of Naval Architects of Korea
Item Type: | Article |
---|---|
Additional Information: | cited By 37 |
Uncontrolled Keywords: | Computational fluid dynamics; Fluid dynamics; Sailing vessels; Stability, Hydrodynamic characteristics; Hydrodynamic coefficients; Hydrodynamic derivatives; Hydrodynamic forces; Rectangular wings; Resistance tests; Subsea installations; Underwater gliders, Hydrodynamics |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 09 Nov 2023 16:20 |
Last Modified: | 09 Nov 2023 16:20 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/8563 |