Harun, N.Y. and Afzal, M.T. (2016) Effect of Particle Size on Mechanical Properties of Pellets Made from Biomass Blends. In: UNSPECIFIED.
Full text not available from this repository.Abstract
Woody biomass is densified in the form of pellets in order to improve its physical and mechanical properties during handling and storage. However, limited research work has been conducted on the mechanical properties of pellets made from agricultural and wood biomass blends. Two commonly available forestry biomass, spruce (S) and pine (P), and three agricultural biomasses, reed canary grass (RCG), timothy hay (H) and switchgrass (SW), were used to form pellets. The mechanical properties were evaluated for three different particle sizes (150-300, 300-425 and 425-600 μm). An Instron attached with an in-house built single unit pelletizer and temperature controlled die was employed to produce a pellet. The aim of this study is to investigate the effect of particle size and blending (agricultural and woody biomass) on the mechanical properties (density and intrinsic yield stress). For all biomasses, pellets made from lower particle size (150-300 μm) exhibited higher density (950-1178 kg/m3 for spruce and pine; 668-800 kg/m3 for RCG, H and SW; 900-970 kg/m3 for blended biomass). The intrinsic yield stress exhibited differences in values for individual forestry (40 MPa) and agricultural biomass (27-48 MPa), however after blending the values converged closest to that value for forestry biomass. In conclusion, blending low cost and abundant available agricultural biomass with woody biomass could not only result in better mechanical properties but would also help to meet the pellet market demand in future. © 2016 The Authors. Published by Elsevier Ltd.
Item Type: | Conference or Workshop Item (UNSPECIFIED) |
---|---|
Additional Information: | cited By 75; Conference of 4th International Conference on Process Engineering and Advanced Materials, ICPEAM 2016 ; Conference Date: 15 August 2016 Through 17 August 2016; Conference Code:131138 |
Uncontrolled Keywords: | Agriculture; Biomass; Blending; Density (specific gravity); Engineering research; Forestry; Mechanical properties; Particle size; Pelletizing; Process engineering; Timber, Agricultural biomass; Axial stress; Biomass pellets; Blended biomass; Different particle sizes; Forestry biomass; Physical and mechanical properties; Reed canary grass, Yield stress |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 09 Nov 2023 16:19 |
Last Modified: | 09 Nov 2023 16:19 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/7456 |